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Lecture 7: Quantum-Classical Merlin Arthur (QCMA) and
Ground State Connectivity

“I have called this principle, by which each slight variation, if useful, is preserved, by the term of
Natural Selection.”
— Charles Darwin
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Introduction. In Lecture 5, we introduced Quantum Merlin Arthur (QMA) as the de facto quantum
generalization of NP, which verified a quantum proof |ψ〉 with a quantum verifier. It is not clear at all,
however, whether a quantum proof is required to capture the full power of QMA. For even though an
arbitrary quantum proof |ψ〉 ∈ (C2)⊗n can be a “complicated” quantum state, a QMA verifier is restricted to
be a polynomial-size quantum circuit. Can such a limited verifier even “distinguish” between “complicated”
proofs |ψ〉 and “simpler” approximations |ψ̃〉 thereof (where by “simpler” we roughly mean that unlike |ψ〉,
|ψ̃〉 has a succinct classical description)? In other words, is a classical proof as good as a quantum one for
the purposes of polynomial-time quantum verification?

In this lecture, we explore this question via the complexity class QCMA, which is QMA but with a classical
proof. Whereas QCMA ⊆ QMA holds trivially, it is not at all clear whether the reverse containment should
hold. In other words, in line with the opening quote of this lecture, we do not yet know whether the
“variation” of allowing proofs to be quantum yields something “useful” (meaning more verification power).
In this sense, “Natural Selection” is yet to play its hand in the study of “quantum NP”.

This lecture is organized as follows. We begin in Section 1 by defining QCMA. Section 2 studies the
QCMA-complete problem of Ground State Connectivity, which gives some insight into the types of classical
proofs which may be useful to quantum verifiers. The proof of QCMA-completeness (Section 2.1) will again
utilize the history state construction of the previous lecture, and its soundness analysis requires a tool known
as the Traversal Lemma (Section 2.1.1). The tightness of this lemma is discussed in the closing section of
this lecture, Section 2.1.2.

1 Quantum-Classical Merlin Arthur (QCMA)

Sandwiched between PromiseMA and QMA is QCMA (more accurately, PromiseQCMA) (i.e. PromiseMA ⊆
QCMA ⊆ QMA), a natural complexity class which is arguably less well-understood than QMA. We begin
with the definition of QCMA.

Definition 1 (Quantum-Classical Merlin Arthur (QCMA)). A promise problem A = (Ayes, Ano, Ainv) is in
QCMA if there exists a P-uniform quantum circuit family {Qn} and polynomials p, q : N 7→ N satisfying the
following properties. For any input x ∈ {0, 1}n, Qn takes in n + p(n) + q(n) qubits as input, consisting of
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the input x on register A, p(n) qubits initialized to a “classical proof” |y〉 ∈ {0, 1}p(n) on register B, and
q(n) ancilla qubits initialized to |0〉 on register C. The first qubit of register C, denoted C1, is the designated
output qubit, a measurement of which in the standard basis after applying Qn yields the following:

• (Completeness/YES case) If x ∈ Ayes, there exists proof y ∈ {0, 1}p(n), such that Qn accepts with
probability at least 2/3.

• (Soundness/NO case) If x ∈ Ano, then for all proofs y ∈ {0, 1}p(n), Qn accepts with probability at most
1/3.

• (Invalid case) If x ∈ Ainv, Qn may accept or reject arbitrarily.

Exercise. What is the only difference between QMA and QCMA?

As with BQP and QMA, the completeness and soundness errors can be made exponentially small via parallel
repetition of the verification protocol and a majority vote. However, as with PromiseMA, it turns out that
without loss of generality, one may assume QCMA has perfect completeness, i.e. in the YES case, there
exists a proof y accepted with certainty. An analogous statement for QMA remains an open question.

Exercise. For QMA, we distinguished between weak and strong error reduction. Why does strong error
reduction for QCMA hold trivially?

Exercise. Note that the proof register B in Definition 1 is expected to contain a standard basis state |y〉
for y ∈ {0, 1}p(n). Since Qn is a quantum circuit, B is a register of p(n) qubits. This means that in the NO
case, a cheating prover can in principle send an arbitrary entangled state |ψ〉 in register B. Why does this
not ruin the soundness property of Definition 1? (Hint: Without loss of generality, we may assume that
before running the actual verification, Qn makes a certain measurement. Which measurement should Qn
make, and how can Qn simulate this measurement unitarily?)

2 Ground State Connectivity

We now study a physically motivated complete problem for QCMA, which gives some insight into what type
of classical proof might be useful to a quantum verifier. As with the Quantum Cook-Levin theorem, the
problem arises in the setting of ground space properties of local Hamiltonians, H =

∑
iHi. In contrast to

k-LH, however, we shift our attention away from the ground state energy of H and to the structural properties
of the ground space of H. For inspiration, we look to the classical study of reconfiguration problems.

Reconfiguration problems. Given a 3-SAT formula φ : {0, 1}n 7→ {0, 1}, computing different properties
of φ can have different complexities. For example, we know from the Cook-Levin theorem that deciding
whether the solution space for φ is non-empty (i.e. does φ have a satisfying assignment?) is NP-complete.
If we instead wish to count the size of the solution space (i.e. the number of satisfying assignments to φ),
this is much harder; it is #P-complete. We may also ask about the structure of the solution space — for
example, is it connected? This turns out to be either in P, NP-complete or PSPACE-complete, depending
on how the question is phrased.

Let us formalize what we mean by “connected” (we state it using ket notation to highlight the general-
ization to the quantum setting later). Given as input a Boolean formula φ : {0, 1}n 7→ {0, 1}, two satisfying
assignments x, y ∈ {0, 1}n, and length parameter 1m for m ∈ N, we say |x〉 and |y〉 are connected with
respect to φ if there exists a sequence of length at most N ≤ m bit flips (Xi1 , Xi2 , . . . , XiN ) for ik ∈ [m]
(where Pauli Xi is applied to qubit i) satisfying two properties:

1. (Intermediate states are in solution space) For all k ∈ [N ] and intermediate states |xk〉 := Xik · · ·Xi1 |x〉,
φ(xk) = 1.
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2. (Final state is target state) XiN · · ·Xi1 |x〉 = |y〉.

In other words, is there a sequence of at most m bit flips we can apply to map x to y, such that each
intermediate state attained is also a solution to φ?

Exercise. Let φ = (x1 ∨ x2) and x = 00 and y = 11. Are x and y connected with respect to φ?

Exercise. Give a Boolean formula φ (not necessarily in CNF form) and solutions x, y which are not con-
nected with respect to φ.

It is important to note that the number of bit flips m needed for mapping x to y in this manner need not
be at most n; in fact, it can scale as O(2n). This is due to property 1 above; the naive greedy sequence of bit
flips mapping x to y might take us temporarily out of the solution space. For this reason, if we drop the upper
bound m in the input, the problem of determining if a 3-SAT formula is connected is PSPACE-complete. In
the formulation above (i.e. with parameter m), however, the problem is NP-complete.

Exercise. Why is deciding if a 3-SAT formula is connected according to our definition above in NP?

Reconfiguration in the quantum setting. By generalizing the reconfiguration problem for 3-SAT to the
quantum setting, we arrive at the main problem to be studied in this section. As before, we are interested
in the structure of the solution space, where “solution space” now refers to the ground space of a local
Hamiltonian.

Definition 2 (Ground State Connectivity (GSCON)). Fix a polynomial ∆ : N 7→ R+.

• Input parameters:

1. k-local Hamiltonian H =
∑
iHi acting on n qubits with Hi ∈ Herm(C2)⊗k satisfying ‖Hi ‖∞ ≤ 1.

2. Thresholds η1, η2, η3, η4 ∈ R such that η2 − η1 ≥ ∆ and η4 − η3 ≥ ∆, and 1m for m ∈ N.

3. Polynomial size quantum circuits Uψ and Uφ generating “starting” and “target” states |ψ〉 and
|φ〉 (starting from |0〉⊗n), respectively, satisfying 〈ψ|H|ψ〉 ≤ η1 and 〈φ|H|φ〉 ≤ η1.

• Output:

1. If there exists a sequence of 2-qubit unitaries (Ui)
m
i=1 ∈ U

(
C2
)×m

such that:

(a) (Intermediate states remain in low energy space) For all i ∈ [m] and intermediate states
|ψi〉 := Ui · · ·U2U1|ψ〉, one has 〈ψi|H|ψi〉 ≤ η1, and

(b) (Final state close to target state) ‖Um · · ·U1|ψ〉 − |φ〉 ‖2 ≤ η3,

then output YES.

2. If for all 2-qubit sequences of unitaries (Ui)
m
i=1 ∈ U

(
C2
)×m

, either:

(a) (Intermediate state obtains high energy) There exists i ∈ [m] and an intermediate state
|ψi〉 := Ui · · ·U2U1|ψ〉, such that 〈ψi|H|ψi〉 ≥ η2, or

(b) (Final state far from target state) ‖Um · · ·U1|ψ〉 − |φ〉 ‖2 ≥ η4,

then output NO.

Intuition. Roughly, GSCON says: Given two ground states1 |ψ〉 and |φ〉 of a k-local Hamiltonian H, are
|ψ〉 and |φ〉 connected through the ground space of H? In other words, is there a sequence of 2-qubit gates
mapping |ψ〉 to |φ〉, such that all intermediate states encountered are also ground states? This turns out to

1More accurately, the definition of GSCON discusses low-energy states, which need not be ground states. However, by using
the fact that QCMA satisfies perfect completeness without loss of generality, one can show QCMA-completeness of GSCON
even when all states involved are ground states of H.
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have an important physical motivation in the quantum setting — it asks whether the ground space of H
has an energy barrier preventing one ground state from being mapped to another via short circuits (while
remaining in the low energy space throughout the computation).

2.1 QCMA-completeness of GSCON

Theorem 3. There exists a polynomial r such that GSCON is QCMA-complete for m ∈ O(r(n)) and k ≥ 7,
where n denotes the number of qubits H acts on.

Proof. For brevity, we sketch containment in QCMA. We give a full proof of QCMA-hardness.

Containment in QCMA. Containment in QCMA holds for any m ∈ O(poly(n)), and is intuitively
straightforward (hence we only sketch it here) — the prover sends2 a classical description of the polynomially
many 2-qubit gates U1, . . . , Um to the verifier as a proof. Since the verifier can prepare both the start and
final states |ψ〉 and |φ〉 efficiently via Uψ and Uφ (also given as input), it can check the energy of each
intermediate state |ψi〉 against H using the protocol from the proof of the Cook-Levin theorem. Finally, to
check if |ψm〉 ≈ |φ〉, the verifier prepares both states and applies the SWAP test3.

QCMA-hardness. Let A = (Ayes, Ano, Ainv) denote a QCMA promise problem. Let x ∈ {0, 1}n be an
input, with corresponding QCMA verifier V = VN · · ·V1 ∈ (C2)⊗n ⊗ (C2)⊗p(n) ⊗ (C2)⊗q(n). Recall V is
a uniformly generated quantum verification circuit consisting of 1- and 2-qubit unitary gates, acting on
registers A (n qubits containing the input x), B (p(n) qubits containing the proof |ψ〉), and C (q(n) ancilla
qubits initialized to all zeroes). We make two assumptions about V without loss of generality: (1) The
completeness and soundness parameters for V are 1 − ε and ε, so that 1 − 2ε ∈ Ω(1/ poly(n)), and (2)
V begins by measuring its proof in the standard basis (this trick was alluded to in a previous exercise; it
forces a cheating prover to send a classical proof, and can be simulated unitarily via the principle of deferred
measurement). Our goal is to construct an instance (H, η1, η2, η3 η4,m,Uψ, Uφ) with 7-local Hamiltonian H
such that, if x ∈ Ayes, then there exists a sequence U1, . . . , Um of 2-qubit gates mapping |ψ〉 to |φ〉 through
the low energy space of H, and if x ∈ Ano, then any such unitary sequence must either leave the low-energy
space of H at some point or map |ψ〉 “far” from |φ〉.

The construction. We now state the construction, which at first glance does not seem to do anything
interesting. The YES case in the correctness analysis will reveal the intuition as to why this works.

Let HCL denote the 5-local Hamiltonian obtained from V the Quantum Cook-Levin Theorem’s circuit-to-
Hamiltonian construction. We define H to act on a Hamiltonian register denoted h (consisting of subregisters
A, B, C, and D, where D is the unary-encoded clock register) and 3-qubit GO register denoted G. Specifi-

cally, H ∈ Herm((C2)
⊗(n+p(n)+q(n)+N)
h ⊗ (C2)⊗3G ).

Exercise. What are the N qubits in the h register used for? Why are there N of them?

Define
H := HCL

h ⊗ PG for P := I − |000〉〈000| − |111〉〈111|. (1)

2More accurately, since arbitrary 2-qubit gates cannot be specified exactly to finite precision, the prover sends elements from
an appropriate notion of an “ε-net” over 2-qubit unitaries.

3For brevity, we omit an in-depth discussion of the SWAP test, but it is a tool worth remembering: Given physical copies
of states |ψ〉 and |φ〉, the SWAP test outputs 0 with probability (1 + |〈ψ|φ〉|2)/2, thus allowing us to estimate ‖ψ − φ ‖2. The
circuit description for the SWAP test is simple — it adds an ancilla in the |+〉 state, and conditioned on the ancilla being |1〉,
swaps the registers containing |ψ〉 and |φ〉. We then perform a Hadamard on the ancilla and measure in the standard basis.
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Exercise. Note that P as written is 3-local. Show how to write P equivalently as a 2-local Hamiltonian.

By the exercise above, we have that H is 7-local. Define the initial and final states as

|ψ〉 := |0〉⊗(n+p(n)+q(n)+N)|0〉⊗3 and |φ〉 := |0〉⊗(n+p(n)+q(n)+N)|1〉⊗3, (2)

which have trivial poly-size preparation circuits Uψ and Uφ. Finally, let W denote a unitary circuit of size
|W | which prepares the history state of H given classical proof y. Define m := 2(p(n) + |W |+ 1).
To complete the construction, set η3 = 0, η4 = 1/4, η1 = α, and η2 = β/(16N2), where α := ε/(m + 1)
and β := π2(1 −

√
ε)/(2(N + 1)3) come from the Quantum Cook-Levin theorem’s circuit-to-Hamiltonian

construction. Note that if we apply weak error reduction to V so that ε is exponentially close to zero, then
the gap ∆ ∈ Ω(1/N5).

Correctness for YES case. Suppose x ∈ Ayes, i.e. there exists a proof y ∈ {0, 1}p(n) accepted by V . We
demonstrate a sequence (Ui)

m
i=1 of 2-qubit unitaries mapping |ψ〉 to |φ〉 through the ground space of H.

Intuition. To see the intuition, we first need an exercise.

Exercise. Prove that |ψ〉 and |φ〉 lie in the null space of H, i.e. H|ψ〉 = H|φ〉. Use the fact that HCL � 0
to conclude that |ψ〉 and |φ〉 hence lie in the ground space of H, and in particular have energy at most α.

Thus, |ψ〉 and |φ〉 both lie in the null space of H, and are identical except for the pesky 3 qubits in the GO
register, which are set to |000〉 and |111〉, respectively. To map |ψ〉 to |φ〉 via 2-local gates, the obvious idea
is hence to flip the GO qubits from 000 to 111. The problem is that we cannot flip more than two qubits at
a time — so after flipping (say) the first two GO qubits, the G register reads |110〉, and now we are in the
support of PG in the definition of H. This means that HCL is now “turned on” and checks the h register
for a history state. Since we are in the YES case, there is a good history state we can use, and moreover,
since we are dealing with QCMA, this history state can be prepared from the all zeroes initial state via a
polynomial-size (though not necessarily P-uniformly generated) circuit.

Exercise. Given a classical proof y ∈ {0, 1}p(n), give a polynomial-size sequence of 2-qubit gates which
maps the all-zeroes state to the history state |ψhist〉 in time polynomial in n. Why does this not necessarily
work for QMA, i.e. given a copy of a quantum proof |η〉 ∈ (C2)⊗p(n) in place of y?

The honest prover’s actions. Recall the h register is broken up into four subregisters, A (input), B (proof),
C (ancilla), and D (clock). The sequence of 2-qubit gates (Ui)

m
i=1 is as follows:

1. Apply Pauli X gates to hB to prepare classical proof y, i.e., map |0〉⊗p(n) to |y〉.

2. Apply W to h to prepare the history state |histy〉 of HCL.

3. Apply (X ⊗X ⊗ I)G to “initiate” checking of |histy〉.

4. Apply (I ⊗ I ⊗X)G to “complete” checking of |histy〉.

5. Apply W † to h to uncompute |histy〉.

6. Apply X gates to hB to map the initial proof |y〉 back to |0〉⊗p(n).

Exercise. Why is the length of the sequence above at most m = 2(p(n) + |W |+ 1), as desired?

Exercise. Verify that the sequence (Ui) correctly maps |ψ〉 to |φ〉.
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Exercise. As in Definition 2, recall the ith intermediate state is defined |ψi〉 := Ui · · ·U1|ψ〉. There is
precise only one i ∈ [6] above such that |ψi〉 is not in the null space of H — which i is this? Prove that for
this i, 〈ψi|H|ψi〉 ≤ η1, as desired.

Proof of correctness for NO case. Suppose x ∈ Ano, i.e. all proofs y ∈ {0, 1}p(n) are rejected by V with
probability at least 1− ε. Intuitively, we cannot proceed as in the YES case now because HCL does not have
a low-energy history state (indeed, all its eigenvalues are at least β). Thus, the moment we “switch on” the
HCL check in Step 3, we are in trouble. The only way a cheating prover can try to bypass this problem is to
somehow try to switch all GO qubits from 000 to 111 without having significant support on the orthogonal
space spanned by {|001〉, |010〉, |011〉, |100〉, |101〉, |110〉}; note that this statement is non-trivial because the
prover is not restricted to simply performing Pauli X gates. Thus, our main task for the NO case is to prove
that this is impossible. The main tool for this is the following lemma, whose proof is given in Section 2.1.1.

Lemma 4 (Traversal Lemma). Let S, T ⊆ (C2)⊗n be k-orthogonal subspaces. Fix arbitrary states |v〉 ∈ S
and |w〉 ∈ T , and consider a sequence of k-qubit unitaries (Ui)

m
i=1 such that

‖ |w〉 − Um · · ·U1|v〉 ‖2 ≤ δ

for some 0 ≤ δ < 1/2. Define |vi〉 := Ui · · ·U1|v〉 and P := I − ΠS − ΠT . Then, there exists i ∈ [m] such
that

〈vi|P |vi〉 ≥
(

1− 2δ

2m

)2

.

Intuitively, this lemma says basically what we are looking for — that for certain types of subspaces S and
T , any local unitary mapping from S to T must at some point “leave” S ⊕ T . The “type” of subspaces this
applies to are defined next.

Definition 5 (k-orthogonal states and subspaces). For k ≥ 1, a pair of states |v〉, |w〉 ∈ (Cd)⊗n is k-
orthogonal if for all k-qubit unitaries U , we have 〈w|U |v〉 = 0. We call subspaces S, T ⊆ (C2)⊗n k-orthogonal
if any pair of vectors |v〉 ∈ S and |w〉 ∈ T are k-orthogonal.

Exercise. Prove that |000〉 and |111〉 are 2-orthogonal. Are they 3-orthogonal?

We can now complete the proof of correctness for the NO case. We know the smallest eigenvalue of HCL

is at least β. Let S and T denote the +1 eigenspaces of Ih ⊗ |000〉〈000|G and Ih ⊗ |111〉〈111|G, respectively.

Exercise. Characterize S and T .

Exercise. Show that S and T are 2-orthogonal subspaces, and that |ψ〉 ∈ S and |φ〉 ∈ T .

By the exercises above, for any sequence of two-qubit unitaries (Ui)
m
i=1, either ‖ |ψm〉 − |φ〉 ‖2 ≥ 1/4 = η4

(in which case we have a NO instance of GSCON and we are done), or we can apply the Traversal Lemma
(Lemma 4) with δ = 1/4 to conclude that there exists an i ∈ [m] such that

〈ψi|P ′|ψi〉 ≥
(

1

4m

)2

=
η2
β
,

where recall |ψi〉 := Ui · · ·U1|ψ〉 and we define P ′ = I −ΠS −ΠT = Ih ⊗ P . We conclude that

〈ψi|H|ψi〉 = 〈ψi|HCL ⊗ P |ψi〉 ≥ β〈ψi|Ih ⊗ P |ψi〉 = β〈ψi|P ′|ψi〉 ≥ η2,

where the first inequality follows since HCL � βI.
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2.1.1 Proof of Traversal Lemma

To conclude the proof of Theorem 3, it remains to show the Traversal Lemma, which we reproduce below
for convenience.

Lemma 4. Let S, T ⊆ (C2)⊗n be k-orthogonal subspaces. Fix arbitrary states |v〉 ∈ S and |w〉 ∈ T , and
consider a sequence of k-qubit unitaries (Ui)

m
i=1 such that

‖ |w〉 − Um · · ·U1|v〉 ‖2 ≤ δ

for some 0 ≤ δ < 1/2. Define |vi〉 := Ui · · ·U1|v〉 and P := I − ΠS − ΠT . Then, there exists i ∈ [m] such
that

〈vi|P |vi〉 ≥
(

1− 2δ

2m

)2

.

The proof of Lemma 4 requires the well-known “Gentle Measurement Lemma”, which quantifies an intuitively
expected behavior: If a measurement outcome Π has high probability of occurring for state ρ, then we expect
the postmeasurement state (proportional to) ΠρΠ to be approximately ρ (i.e. the measurement should not
disturb the state much). We state this lemma below first, and then prove Lemma 4.

Lemma 6 (Gentle Measurement Lemma). Let ρ ∈ L
(
Cd
)

be a density operator and O � Π � I a projective

measurement operator for Π ∈ L
(
Cd
)
, such that Tr(Πρ) ≥ 1− ε. Then, ‖ ρ−ΠρΠ ‖tr ≤ 2

√
ε.

Note that ΠρΠ above is not necessarily normalized.

Proof of Lemma 4. We give a proof by contradiction. Suppose that for all i ∈ [m], the expectations satisfy
〈vi|P |vi〉 < κ := [(1− 2δ)/(2m)]2. Consider the following thought experiment inspired by the quantum Zeno
effect4. Imagine that after each Ui is applied, we measure |vi〉 using the projective measurement (Π, I −Π)
for Π := I − P , and postselect on obtaining outcome Π. Define the following two sequences:

• |v′i〉 := Π|vi〉 for i ∈ [m],

• |v′′1 〉 := |v′1〉 and |v′′i 〉 := ΠUi|v′′i−1〉 for i ∈ {2, . . . ,m}.

Note that |v′i〉 and |v′′i 〉 are not necessarily normalized.
To set up our contradiction, we first prove by induction on i that

‖ |vi〉〈vi| − |v′′i 〉〈v′′i | ‖tr < 2i
√
κ. (3)

For the base case i = 1, we have |v′′1 〉 = |v′1〉. Then, since 〈v1|P |v1〉 < κ, we know that Tr(Π|v1〉〈v1|) > 1− κ.

Exercise. Use the Gentle Measurement Lemma (Lemma 6) to conclude

‖ |v1〉〈v1| − |v′′1 〉〈v′′1 | ‖tr < 2
√
κ, (4)

as required for the base case.

For the inductive case, assume Equation (3) holds for 1 ≤ i ≤ j − 1. We prove it holds for i = j.
Specifically, ∥∥ |vj〉〈vj | − |v′′j 〉〈v′′j |∥∥tr ≤

∥∥ |vj〉〈vj | − |v′j〉〈v′j |∥∥tr +
∥∥ |v′j〉〈v′j | − |v′′j 〉〈v′′j |∥∥tr

< 2
√
κ+

∥∥ |v′j〉〈v′j | − |v′′j 〉〈v′′j |∥∥tr
= 2

√
κ+

∥∥∥ΠUj
(
|vj−1〉〈vj−1| − |v′′j−1〉〈v′′j−1|

)
U†jΠ

∥∥∥
tr

≤ 2
√
κ+

∥∥ |vj−1〉〈vj−1| − |v′′j−1〉〈v′′j−1|∥∥tr
< 2

√
κ+ 2(j − 1)

√
κ

= 2j
√
κ, (5)

4Roughly, the quantum Zeno effect is the phenomenon that a quantum system which is continuously observed never evolves.
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where the first statement follows from the triangle inequality, the second from the Gentle Measurement
Lemma, the fourth from the facts that the Schatten p-norms are invariant under isometries and that
‖ABC ‖p ≤ ‖A ‖∞ ‖B ‖p ‖C ‖∞, and the fifth from the induction hypothesis. This establishes Equality (3).

Exercise. Use the fact that ‖ |v〉〈v| − |w〉〈w| ‖tr ≤ 2 ‖ |v〉 − |w〉 ‖2 for unit vectors |v〉, |w〉 to conclude that

‖ |v′′m〉〈v′′m| − |w〉〈w| ‖tr < 1, (6)

We are now ready to obtain the desired contradiction. To do so, observe that since |v〉 ∈ S, and since S
and T are k-orthogonal subspaces, we have that for all i ∈ [m], |v′′i 〉 ∈ S (i.e., if S is 1-dimensional, this is
the Zeno effect). Thus, we have 〈v′′m|w〉 = 0, implying that

‖ |v′′m〉〈v′′m| − |w〉〈w| ‖tr = 1 + ‖ |v′′m〉 ‖2 ≥ 1.

This contradicts Equation (6), as desired.

2.1.2 Tightness of the Traversal Lemma

The proof of QCMA-completeness of GSCON relied crucially on the Traversal Lemma, and so it is natural
to ask whether the lemma is tight. Namely, in Lemma 4, the lower bound on 〈vi|P |vi〉 scales as Θ(1/m2)
(for m the number of unitaries and for fixed δ). This suggests that one can better “avoid” the subspace
P projects onto if one uses a longer sequence of local unitaries. Indeed, it turns out that, at least in some
cases, this behavior is possible; thus, a dependence on m is necessary in Lemma 4.

Theorem 7. We assume the notation of Lemma 4. Fix any 0 < ∆ < 1/2, and consider 2-orthogonal states
|v〉 = |000〉 and |w〉 = |111〉, with P := I − |v〉〈v| − |w〉〈w|. Then, there exists a sequence of m 2-local
unitary operations mapping |v〉 to |w〉 through intermediate states |vi〉, each of which satisfy 〈vi|P |vi〉 ≤ ∆,
and where m ∈ O(1/∆2).

Proof intuition. We omit the proof for brevity, but the idea behind it is based on the following rough analogy:
Suppose one wishes to map the point (1, 1) (corresponding to |000〉) in the 2D Euclidean plane to (−1,−1)
(corresponding to |111〉) via a sequence of moves with the following two restrictions: (1) For each current
point (x, y), the next move must leave precisely one of x or y invariant (analogous to 2-local unitaries acting
on a 3-qubit state), and (2) the Euclidean distance between (x, y) and the line through (1, 1) and (−1,−1)
never exceeds ∆ (analogous to the overlap with P not exceeding ∆). In other words, we wish to stay close to
a diagonal line while making only horizontal and vertical moves. This can be achieved by making a sequence
of “small” moves resembling a “staircase”. The smaller the size of each “step” in the staircase, the better
we approximate the line, at the expense of requiring more moves (analogous to increasing the number of
unitaries, m). This is the basic premise behind the proof of Theorem 7 — giving a formal proof takes some
work, as the back-and-forth shuffling of amplitude with the application of each local gate Ui needs to be
carefully managed.
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